Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 37(5): 784-790, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35263031

RESUMO

Novel erbium(III) ion-doped borate-based glasses (Er3+ :BCNF) by conventional melt-quenching technique were designed and synthesized. The glasses were characterized for their structural, vibrational and spectroscopic properties. The nephelauxetic ratio, bonding parameters, and Judd-Ofelt (JO) intensity parameters (Ωλ λ = 2, 4 and 6) were determined by using absorption spectrum of 1 mol% Er2 O3 doped glass. These JO parameters were utilized to derive radiative properties for various excited states of erbium(III) ions. Emission cross-section for 4 I13/2 → 4 I15/2 transition of erbium(III) ions was computed through McCumber theory. The decay curves for (2 H11/2 , 4 S3/2 ) and 4 I13/2 levels were recorded and analysed. All the results of Er3+ :BCNF glasses revealed that the studied glasses are efficient and thermally stable and could be suitable for display devices, optical amplification and green laser applications.

2.
Dalton Trans ; 50(27): 9512-9518, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254617

RESUMO

The green, red, near-infrared and near-infrared-to-visible upconverted luminescence properties of Er3+/Yb3+ codoped Y3Ga5O12 nanocrystalline powders have been studied using laser spectroscopy. A diffuse reflectance and luminescence spectra confirm that Er3+ and Yb3+ ions occupy the Y3+ sites of the single-phase cubic nano-garnet. Very bright green and red luminescence of the Er3+ ions are detected by the naked eyes, even for a laser power as low as 15 mW, when the Yb3+ ions are excited at 970 nm. The red upconverted emission is more intense than that under direct excitation of the Er3+ ions. The power dependence and the dynamics of the near-infrared-to-green and near-infrared-to-red upconverted emissions show the existence of different two-photon energy transfer upconversion processes. The results here presented indicate that Er3+/Yb3+ codoped Y3Ga5O12 can be a good candidate as an optical nanoheater and nanothermometer in biomedicine applications in the first biological window.

3.
Environ Res ; 199: 111323, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33989620

RESUMO

Design and development of the efficient and durable photocatalyst that generates H2 fuel utilizing industrial wastewater under solar light irradiation is a sustainable process. Innumerable photocatalysts have been reported for efficient H2 production, but their large-scale production with the same efficiency of H2 production is a challenging task. In this study, a few gram-scale syntheses of ZnS wrapped with NiO hierarchical core-shell nanostructure via the surfactant-mediated process has been reported. Morphology and crystal structure analysis of ZnS/NiO showed spherical shaped hierarchical core-shell with cubic and face-centered cubic crystal structures. The surface examination confirmed the presence of Zn2+, S2-, Ni2+ and O2- ions in the nanocomposite. The photocurrent and photoluminescence studies of pristine and nanocomposites revealed that core-shell material is non-corrosive with a prolonged life-time of photo-excitons. Parametric studies on photocatalytic H2 generation in lab-scale photoreactor using crude glycerol in water recorded a high rate of H2 generation of 9.3 mmol h-1.g-1 of catalyst under the simulated solar light irradiation. Optimized reaction parameters are extended to a demonstrative photoreactor containing aqueous crude glycerol produced 18.5 mmol h-1 of H2 generation under the natural solar light irradiation. The same nanostructures were further tested with the simulated sulfide wastewater and the optimized catalyst showed H2 production of 350 mL h-1. The experimental results of time-on stream and catalytic stability demonstrated that ZnS/NiO hierarchical core-shell nanostructures can be recyclable and reusable for the continuous photocatalytic H2 generation.


Assuntos
Glicerol , Águas Residuárias , Sulfetos , Compostos de Zinco
4.
Environ Pollut ; 269: 116170, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321309

RESUMO

Herein, we report the optimization of nitrogen (N) doping in TiO2 nanotubes to achieve the enhanced photocatalytic efficiencies in degradation of dye and H2 gas evolution under solar light exposure. TiO2 nanotubes have been produced via hydrothermal process and N doping has been tuned by varying the concentration of urea, being the source for N, by solid-state dispersion process. The structural analysis using XRD showed the characteristic occupancy of N into the structure of TiO2 and the XPS studies showed the existence of Ti-N-Ti network in the N-doped TiO2 nanotubes. The obtained TEM images showed the formation of 1D tube-like structure of TiO2. Diffuse reflectance UV-Vis absorption spectra demonstrated that the N-doped TiO2 nanotubes can efficiently absorb the photons of UV-Vis light of the solar light. The optimized N-doped TiO2 nanotubes (TiO2 nanotubes vs urea @ 1:1 ratio) showed the highest degradation efficiency over methyl orange dye (∼91% in 90 min) and showed the highest rate of H2 evolution (∼19,848 µmol h-1.g-1) under solar light irradiation. Further, the recyclability studies indicated the excellent stability of the photocatalyst for the durable use in both the photocatalytic processes. The observed efficiency was ascribed to the optimized doping of N-atoms into the lattices of TiO2, which enhanced the optical properties by forming new energy levels of N atoms near the valence band maximum of TiO2, thereby increased the overall charge separation and recombination resistance in the system. The improved reusability of photocatalyst is attributed to the doping-induced structural stability in N-doped TiO2. From the observed results, it has been recognized that the established strategy could be promising for synthesizing N-doped TiO2 nanotubes with favorable structural, optical and photocatalytic properties towards dye degradation and hydrogen production applications.


Assuntos
Luz , Nanotubos , Catálise , Titânio
5.
Inorg Chem ; 59(23): 17109-17122, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231439

RESUMO

Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 µM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 µM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/enzimologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cromonas/síntese química , Cromonas/metabolismo , Cromonas/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Proteases 3C de Coronavírus/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Paládio/química , Ligação Proteica , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
J Chem Phys ; 148(4): 044201, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390818

RESUMO

Pressure-induced energy blue- and red-shifts of the 4F3/2 → 4I9/2,11/2 near-infrared emission lines of Nd3+ ions in YAlO3 perovskite nano-particles have been measured from ambient conditions up to 29 GPa. Different positive and negative linear pressure coefficients have been calibrated for the emission lines and related to pressure-induced changes in the interactions between those Nd3+ ions and their twelve oxygen ligands at the yttrium site. Potentiality of the simple overlap model, combined with ab initio structural calculations, in the description of the effects of these interactions on the energy levels and luminescence properties of the optically active Nd3+ ion is emphasized. Simulations show how the energies of the 4f3 ground configuration and the barycenters of the multiplets increase with pressure, whereas the Coulomb interaction between f-electrons decreases and the crystal-field strength increases. All these effects combined explain the wavelength blue-shifts of some near-infrared emission lines of Nd3+ ions. Large pressure rates of various emission lines suggest that a YAlO3 perovskite nano-crystal can be a potential candidate for near-infrared optical pressure sensors.

7.
Phys Chem Chem Phys ; 18(21): 14720-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27185655

RESUMO

Nanocrystalline Lu3Ga5O12 garnets doped with Tm(3+)/Yb(3+) ions have been synthesized by a low cost and environmentally benign sol-gel technique and characterized for their structural, Stokes and anti-Stokes luminescence properties. The diffuse reflectance spectra of doped Lu3Ga5O12 nano-garnets have been measured to derive the partial energy level structure of Tm(3+) and Yb(3+) ions and possible energy transfer channels between them. Upon laser excitation at 473 nm, weak red and intense near-infrared Stokes emissions have been observed in the nano-garnets. The decay curves of (3)H4 and (1)G4 levels of Tm(3+) ions and the (2)F5/2 level of Yb(3+) ions have been measured upon resonant laser excitation and are found to be non-exponential in nature due to multipolar interactions. In order to know the kind of multipolar interaction among optically active ions, the decay curves are analyzed through the generalized Yokota-Tanimoto model. Moreover, under 970 nm laser excitation, intense blue anti-Stokes emission is observed by the naked eye in Tm(3+)-Yb(3+) co-doped Lu3Ga5O12 nano-garnets. The results show that as-synthesized nano-garnets may be useful in the field of phosphors and photonics.

8.
Chemphyschem ; 16(18): 3928-36, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26467682

RESUMO

Er(3+) -Yb(3+) co-doped Lu3 Ga5 O12 nanogarnets were prepared and characterized; their structural and luminescence properties were determined as a function of the Yb(3+) concentration. The morphology of the nanogarnets was studied by HRTEM. Under 488 nm excitation, the nanogarnets emit green, red, and near-infrared light. The decay curves for the ((4) S3/2 , (2) H11/2 ) and (4) F9/2 levels of the Er(3+) ions exhibit a non-exponential nature under resonant laser excitation and their effective lifetimes are found to decrease with an increase in the Yb(3+) concentration from 1.0 to 10.0 mol %. The non-exponential decay curves are well fitted to the Inokuti-Hirayama model for S=8, indicating that the mechanism of interaction for energy transfer between the optically active ions is of dipole-quadrupole type. Upon 976 nm laser excitation, an intense green upconverted emission is clearly observed by the naked eyes. A significant enhancement of the red-to-green intensity ratio of Er(3+) ions was observed with an increase in Yb(3+) concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two-photon upconversion processes for the green and red emissions.


Assuntos
Érbio/química , Gálio/química , Raios Infravermelhos , Luz , Lutécio/química , Nanoestruturas , Itérbio/química , Microscopia Eletrônica de Transmissão , Difração de Pó , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...